
Georg Gottlob
Univ. of Oxford, TU Wien

& DeepReason.ai

Knowledge Graphs and Enterprise AI
The Promise of an Enabling Technology

VADA
EPSRC

PROJECT

Manchester Oxford

Edinburgh

Georg Gottlob
Univ. of Oxford, TU Wien

& DeepReason.ai

Knowledge Graphs and Enterprise AI
The Promise of an Enabling Technology

Knowledge Graphs as Large “World” KBs

Cyc [Lenat &Guha 1989]
: “comprehensive ontology and knowledge base of

everyday common sense knowledge”.

Freebase [Bollacker et al. 2007] : “online collection of structured
data harvested from many sources, including user-submitted
wiki contributions”.

Google Knowledge Graph [Singhal 2012] + K.Vault [Dong et al. 2014]
: “KB used by Google to enhance its search engine's search

results with semantic-search information gathered from a wide
variety of sources”.

DBpedia [Auer et al. 2007]. Yago [Suchanek et al 2007]
both generate structured ontologies from Wikipedia.

Wikidata [Vrandečić 2012, Krötzsch+V. 2014] open knowledge base
that can be read and edited by both humans and machines.

More Specialized Knowledge Graphs

Facebook Knowledge Graph: Social graph with people, places and
things + information from Wikipedia

Amazon Knowledge Graph: Started as product categorization ontology

Wolfram KB: World facts + mathematics

Factual: Businesses & places

Megagon (Recruit Inst.): People, skills, recruiting

Central Banks: Company register – ownership graph

Credit Rating Agencies …

Thousands of medium to large size companies now want their own
corporate knowledge graph. This not just for semantic indexing and
search, but for advanced reasoning tasks on top of machine learning.

Reasoning in Knowledge Graphs

Ontology / Rules

EDB/ABox

EDB+IDB

Reasoning tasks are required that cannot be expressed by
description logics, and cannot be reasonably managed by
relational DBMS, nor by graph DBMS.

Many still think that DLs or graph databases suffice. However:

Wikidata contains the statement :

Taylor was married to Burton starting from 1964 and ending 1974

Example: Wikidata Marriage Intervals

This can be represented in relational DB or Datalog-notation by :

[Krötzsch DL 2017]

∀ u,v,x,y. married(u,v,x,y) → married(v,u,x,y)

Symmetry rule for marriage intervals in Datalog:

This cannot be expressed in DLs!

married(taylor,burton,1964,1974)

Note: In what follows, we will often omit universal quantifiers.

0.138

0.093

0.003 0.083

0.007

0.51

0.24

0.25

0.381

0.006

0.003

0.073

0.093

0.32

0.17

0.22

0.472

0.7

0.081

0.138

0.007

0.0070.093 0.013

0.191

0.65

1

0.38

0.128

0.0820.195

0.007

0.592
0.932

0.334

0.875

0.131

0.532

0.982

0.443
0.112
0.452

0.143 0.013

0.048

0.393

0.878

Example: Controlling Companies

Example: Controlling Companies

company(x) → own(x,x).

own(x,y,w), w>0.5 → control(x,y).

control(x,y), own(y,z,w), v=msum(w,y), v>0.5 → control(x,z).

This cannot be expressed in DLs and only clumsily in SQL and
Graph DBMS!

x controls y if
x directly holds over 50% of y, or
x controls a set of companies that jointly hold over 50% of y

Example: My Creditworthiness

Example: My Creditworthiness

up to £10,000 £8,500 £12,000

up to EUR 10,000 up to EUR 20,000

£ 8,000 £ 12,500 EUR 14,000

£500

People who live in a joint household with someone who does not
pay their bills are likely to fail repaying their own debts.

A machine-learning program has “reasonably” learned:

This ethically questionable rule was applied to wrong data.

Explanation

People who live in a joint household with someone who does not
pay their bills are likely to fail repaying their own debts.

A machine-learning program has “reasonably” learned:

This ethically questionable rule was applied to wrong data.

A human credit rating expert would instead use of the rule:

Explanation

If property owners move into their recently bought one-family
property, then the previous occupiers have most likely moved out.

(Such updates are often missing in the database)

This rule can be used to update the database before applying
machine learning.

Knowledge Graph Management Systems (KGMS)

KGMS combine the power of rule-based reasoning with machine
learning over Big Data:

KGMS = KBMS + Big Data + Analytics

Misusing the lateralization thesis for illustration

symbolic subsymbolic
taught self-learned

symbolic subsymbolic
taught self-learned

Fast
thinking

Slow
thinking

Grandma: “Fly agarics are
poisonous mushrooms.
If you eat a poisonous
mushroom, you may die”.

Yikes, a
fly agaric!

Desiderata for KGMS According to our Philosophy

No extra permanent data repository or database/DBMS
- Uses (possible multiple) existing company data repositories/databases
- Can query and update these – streaming into main memory for reasoning
- No data migration necessary

Multiple data models possible.
- Relational, graph, RDF, …
- Reasoning engine interprets all data relationally (by Datalog facts)

High expressive power of reasoning language; express at least:
- Full Datalog with full recursion and stratified negation
- Graph navigation
- Aggregate functions
- Description logics such as: DL-Lite (OWL 2 QL), EL, F-Logic Lite
- SPARQL under RDFS or OWL2 QL Entailment Regimes

Good complexity and scalability
- Tractability guarantee for main formalism
- Highly efficient, and highly parallelizable language fragments

Support for machine learning, analytics, and collaborative filtering
- APIs to standard ML and analytics packages (do not reinvent the wheel)
- Provide system support for graph analysis (e.g. balanced separators), and typical

functions such as argmin (with grad. desc.), eigenvector, pagerank, simrank, etc.

Knowledge Graph Management Systems

a diverse new field – many systems with different capabilities

Graph Path

Graph database supporting SPARQL and Prolog reasoning

Apache Cassandra-based KGMS providing schema support
based on the Entity Relationship model

Knowledge Graph-as-a-Service

Data source-agnostic KGMS supporting ontological and
recursive reasoning based on Datalog

Leading graph database system

RDF-based unifying data-integration platform

SPARQL 1.1-graph database-based end-user-oriented
platform

Azure-based computation-focused platform

RDF and OWL-based metadata management solution.

Analysis along many dimensions possible

Migration necessary?

Graph database supporting SPARQL and Prolog reasoning

Apache Cassandra-based KGMS providing schema support
based on the Entity Relationship model

Knowledge Graph-as-a-Service

Data source-agnostic KGMS supporting ontological and
recursive reasoning based on Datalog

Leading graph database system

RDF-based unifying data-integration platform

SPARQL 1.1-graph database-based end-user-oriented
platform

Azure-based computation-focused platform

RDF and OWL-based metadata management solution.

Graph database supporting SPARQL and Prolog reasoning

Apache Cassandra-based KGMS providing schema support
based on the Entity Relationship model

Knowledge Graph-as-a-Service

Data source-agnostic KGMS supporting ontological and
recursive reasoning based on Datalog

Leading graph database system

RDF-based unifying data-integration platform

SPARQL 1.1-graph database-based end-user-oriented
platform

Azure-based computation-focused platform

RDF and OWL-based metadata management solution.

Principle Data Format / Backend

Graph database supporting SPARQL and Prolog reasoning

Apache Cassandra-based KGMS providing schema support
based on the Entity Relationship model

Knowledge Graph-as-a-Service

Data source-agnostic KGMS supporting ontological and
recursive reasoning based on Datalog

Leading graph database system

RDF-based unifying data-integration platform

SPARQL 1.1-graph database-based end-user-oriented
platform

Azure-based computation-focused platform

RDF and OWL-based metadata management solution.

Analysis along many dimensions possible

Vadalog KGMS Being Built at Oxford

• VADA = Value-Added DAta

• General architecture of VADALOG system

• Core reasoning language VADALOG = Warded Datalog + extensions

• Connectivity: Some plug-ins

Current Team Members

Tim Furche

+ special features:
argmin, sampling, graph
libraries (e.g.separators),

matrix ev, simrank,
pagerank, …

VADALOG
CORE REASONING

WEB

Rule
Repository

Vadalog: The Core Reasoning Language

Core Vadalog = full Datalog + restricted use of  + stratif. negation + 

• Data exchange, data integration
• Data extraction
• Reasoning with RDF  Wikidata example
• Ontology querying (DL-Lite, EL, etc.)
• Data anonymization
• Duplicate handling
• Automated product configuration
• Conceptual Modeling (e.g., UML)

Why existential quantifiers in rule heads?

person(FirstName, Lastname, Birthdate)

employee(Lastname, Firstname, Address)

employee(X,Y,Z) → W person(Y,X,W)

Data Exchange, Data Provisioning, Data Wrangling

Source Schema S Target Schema T

I ?

st t

[Fagin, Kolaitis, Miller & Popa, 2003]; [Arenas et al., 2014]

Object Creation
e.g. in web data extraction

PRODUCT

Toshiba_Protege_cx

Dell_25416

Dell_23233

Acer_78987

PRICE

480

360

470

390

PRODUCT

Toshiba_Protege_cx

Dell_25416

Dell_23233

Acer_78987

PRICE

480

360

470

390

T1 T2

Object Creation
e.g. in web data extraction

PRODUCT

Toshiba_Protege_cx

Dell_25416

Dell_23233

Acer_78987

PRICE

480

360

470

390

T1 T2

Object Creation
e.g. in web data extraction

PRODUCT

Toshiba_Protege_cx

Dell_25416

Dell_23233

Acer_78987

PRICE

480

360

470

390

table(T1),

table(T2),

sameColor(T1,T2),

isNeighbourRight(T1,T2) 

T tablebox(T),

contains(T,T1),

contains(T,T2).

T1 T2

Object Creation
e.g. in web data extraction

In the RDF-like “graph” notation this tuple is broken up into
several triples (here represented as logical facts):

spouse1(u,y1) ∧ spouse2(u,y2) ∧ start(u,y3) ∧ end(u,y4) →

∃v.spouse(v,y1) ∧ spouse1(v,y2) ∧ start(v,y3) ∧ end(v,y4)

This symmetry rule for marriage intervals now becomes:

spouse1(k1,taylor),

spouse2(k1,burton),

start(k1,1964),

end(k1,1974)

spouse1(k2,burton),

spouse2(k2,taylor),

start(k2,1964),

end(k2,1974)

∀ u,v,x,y. married(u,v,x,y) → married(v,u,x,y)

Reasoning with RDF – Foreign Key Creation

The DL-Lite Family

Popular family of DLs with low (AC0) data complexity

[Calvanese, De Giacomo, Lembo, Lenzerini & Rosati, J. Autom. Reasoning 2007]

Description Logics & Ontological Reasoning

DL-Lite TBox First-Order Representation (Datalog§)

DL-Litecore

professor v 9teachesTo

professor v :student

DL-LiteR (OWL 2 QL)

hasTutor¡ v teachesTo

DL-LiteF

funct(hasTutor)

8X professor(X)  9Y teachesTo(X,Y)

8X professor(X)  student(X)  ?

8X8Y hasTutor(X,Y)  teachesTo(Y,X)

8X8Y8Z hasTutor(X,Y)  hasTutor(X,Z)  Y = Z

Datalog[]: Full Datalog augmented with -quantifier

[Beeri & Vardi, 1981]; [J. Mitchell 1983] [Chandra & Vardi 1985];

[Calì, G., & Kifer, 2008]; [Baget, Leclère & Mugnier, 2010]

Unfortunately:

Theorem: Reasoning (𝐾𝐵 ⊨ 𝑞) with Datalog[] is undecidable.

Finding expressive decidable/tractable fragments has become a topic

of intensive research over the last 10 years.

Datalog : Datalog[,⊥,strat, …] subject to syntactic restrictions.

Vadalog: member of the Datalog family admitting efficient
reasoning methods.

Guarded

Sticky

DL-LiteR

Weakly-Sticky

Weakly-(frontier-)
guarded

Main Decidable Datalog± Languages

Linear
ℰℒℋ𝐼

BTS

FUS

Guarded

Sticky

DL-LiteR

Weakly-Sticky

Weakly-(frontier-)
guarded

Main Decidable Datalog± Languages

Linear
ℰℒℋ𝐼

BTS

FUS

Datalog[,…]

weakly frontier-guarded Datalog[,⊥,strat]

Core Vadalog

= warded Datalog[,⊥,strat]

SPARQL + OWL 2QL

UNDECIDABLE

EXPTIME

PTIME

Data complexity

Datalog[⊥,strat]

Linear Datalog[,⊥]

AC0

Datalog[,…]

weakly frontier-guarded Datalog[,⊥,strat]

Core Vadalog

= warded Datalog[,⊥,strat]

SPARQL + OWL 2QL

UNDECIDABLE

EXPTIME

PTIME

Data complexity

Datalog[⊥,strat]

Linear Datalog[,⊥]

AC0

T[3], P[1], Q[2]

T[2], P[2], Q[1]

Affected Positions

Vadalog is based on Warded Rules

A Datalog program is warded if for each rule body:

• all dangerous variables jointly occur in a single „ward“ atom, and

• this ward shares only unaffected variables with the other body-atoms

Core Vadalog = warded Datalog[,⊥,strat]

P(X,Y), S(Y,Z)  ∃W T(Y,X,W)

P(X,Y)  ∃Z Q(X,Z)

T(X,Y,Z)  ∃W P(W,Z)

Examples of Warded Datalog Rules

spouse1(x,y1) ∧ spouse2(x,y2) ∧
start(x,y3) ∧ end(x,y4) →

∃v. spouse2(v,y1) ∧ spouse1(v,y2) ∧

start(v,y3) ∧ end(v,y4)

1. Symmetry rule for marriage intervals:

2. : OWL 2 QL description logic

DL-Lite TBox Representation in Vadalog

DL-Litecore

professor v 9teachesTo

professor v :student

DL-LiteR (OWL 2 QL)

hasTutor¡ v teachesTo

8X professor(X)  9Y teachesTo(X,Y)

8X professor(X)  student(X)  ?

8X8Y hasTutor(X,Y)  teachesTo(Y,X)

- Datalog with full recursion and stratified negation

- Description logics: DL-Lite Family, in particular,
OWL 2 QL, EL, F-Logic Lite

- SPARQL under RDFS and OWL 2 QL Entailment Regimes

Theorem

Vadalog can express:

- Datalog with full recursion and stratified negation

- Description logics: DL-Lite Family, in particular,
OWL 2 QL, EL, F-Logic Lite

- SPARQL under RDFS and OWL 2 QL Entailment Regimes

Theorem

Vadalog can express:

Moreover: All queries of iBench can be expressed in Vadalog!

Further Language Features (selection)

Data types and associated operations & expressions:
integer, float, string, Boolean, date, sets.

Monotonic aggregations: min, max, sum, prod, count
work even in presence of recursion while preserving
monotonicity of set-containment

Example: Company Control

own(x,y,w), w>0.5 → control(x,y);

control(x,y),own(y,z,w),

v=msum(w,y), v>0.5 → control(x,z).

Probabilistic reasoning: facts and rules can be adorned with
weights. Marginal weights for derived facts will be
computed assuming independence.

Equality (EGDs, functional dependencies) if non-conflicting.

Rules can be uncertain

@weight(0.6) company(C) → ∃C1 own(C,C1).

@weight(0.5) own(C,S), holding(C) → subsidiary(S).

 A Soft Vadalog rule has a weight

 Similar to Markov Logic Network, but Soft Vadalog
is not full First Order Logic
allows recursive definitions
has unrestricted domain

Database Interface

@bind("Own", "rdbms", "companies.ownerships").

@qbind("Own", "graphDB", "MATCH (a)-[o:Owns]->(b) RETURN a,b,o.weight").

Cypher query (Neo4j)

@bind("q","data source", "schema","table").

@update("q",{1,3,4,5}).

https://en.wikipedia.org/wiki/Neo4j

Machine Learning,
Big Data Analytics, NLP
& Data Visualization

We are currently experimenting with
different tools and different types of
interfaces and interactions.

Interaction Model 1

Machine
Learning

i

o

Interaction Model 2

Machine
Learning

i

P(...)

Interaction Model 3

Machine
Learning

i

LEARNED RULES

@qbind("Own", "oxpath",

"doc(‘http://company_register.com/ownerships’)

/descendant::field()[1]/{$1}

/following::a[.#=’Search’]/{click/}

/(//a[.#=’Next’]/ {click/})∗
//div[@class=’c’]: [./span[1]:][./span[3]:]")

Web Data Extraction
& IoT

Interfacing KG to OXPath;
Binding OXPath to Datalog

[Furche, T., Gottlob, G., Grasso, G., Schallhart, C., & Sellers, A. (2013).
OXPath: A language for scalable data extraction, automation, and crawling on the deep web.
The VLDB Journal, 22(1), 47-72. ".]

Core Algorithms

• Bottom-up chase processing with „aggressive“ termination strategy

• Top-down query processing (currently under implementation)

• Advanced program rewriting and optimization techniques

• Efficient & highly scalable cache managmt., query plan optimization

• Recent evaluation shows the system is extremely competitive

For more details see Luigi Bellomarini, Emanuel Sallinger, Georg Gottlob: The Vadalog
System: Datalog-based Reasoning for Knowledge Graphs. PVLDB 11(9) 2018

Parser

Query

manager

Logical optimizer

Planner

Execution plan optimizer

Record manager

Cache manager Termination manager In-memory indexer

Interfaces (REST, JDBC, API, GUI, …)

Expressions

evaluator
Aggregator

Probabilistic

reasoning

Warded Datalog±

Nearly-linear

Datalog±

 PVLDB 11(9) 2018.

Input Scan

Join Scan

Linear Datalog± Scan

Output Scan

In-Memory Stream Processing

Similar to Volcano iterator model

Input Scan

Join Scan

Linear Datalog± Scan

Output Scan

Cache*

In-Memory Stream Processing

*an extension point: caching can be
in-memory, distributed (e.g., Ehcache), …

Input Scan

Join Scan

Linear Datalog± Scan

Output Scan

Cache Index

In-Memory Stream Processing

Cache*

*an extension point: caching can be

in-memory, distributed (e.g., Ehcache), …

Input Scan

Join Scan

Linear Datalog± Scan

Output Scan

Cache Index

Termination Strategy

In-Memory Stream Processing

*an extension point: caching can be

in-memory, distributed (e.g., Ehcache), …

Cache*

(Person with significant
control over a company)

Performance

 PVLDB 11(9) 2018

More benchmarks in Luigi Bellomarini, Emanuel Sallinger, Georg Gottlob: The Vadalog
System: Datalog-based Reasoning for Knowledge Graphs. PVLDB 11(9) 2018

PAPER ON THE VADALOG LANGUAGE

• Marcelo Arenas, Georg Gottlob, Andreas Pieris: Expressive
languages for querying the semantic web.
ACM TODS 13:1-45, 2018.

PAPERS ON THE VADALOG SYSTEM

• Luigi Bellomarini, Georg Gottlob, Andreas Pieris, Emanuel
Sallinger: Swift Logic for Big Data and Knowledge Graphs.
International Joint Conference on Artificial Intelligence (IJCAI) 2017

• Luigi Bellomarini, Emanuel Sallinger, Georg Gottlob: The Vadalog
System: Datalog-based Reasoning for Knowledge Graphs.
PVLDB 11(9) 2018.

…

Some Applications

with two special partners/customers

1. Company Control
new approaches to classical problems – when does
a company control another company?

2. Close Links
understanding whether companies are “too close”
in terms of mutual stock participation for different
purposes, e.g., for loan granting

3. Detection of Family Business
identifying families along with their ownerships,
i.e., considering the family as the elementary
control unit

4. Anonymization of Confidential Data
deciding whether a dataset respects complex
confidentiality criteria (e.g., ISTAT) before
publication and, if not, make it anonymous

5. Hybrid Data Science Pipelines
with different data sources, machine learning
frameworks, programming languages, …

Collaboration

Banca d’Italia

Central Bank of Italy

… more applications that we cannot talk about at this point

1. Company Control
new approaches to classical problems – when does
a company control another company?

2. Close Links
understanding whether companies are “too close”
in terms of mutual stock participation for different
purposes, e.g., for loan granting

3. Detection of Family Business
identifying families along with their ownerships,
i.e., considering the family as the elementary
control unit

4. Anonymization of Confidential Data
deciding whether a dataset respects complex
confidentiality criteria (e.g., ISTAT) before
publication and, if not, make it anonymous

5. Data Science: Hybrid pipelines
with different data sources, machine learning
frameworks, programming languages, …

… more applications that we cannot talk about at this point

Collaboration

Banca d’Italia

Central Bank of Italy

4. Anonymization of Confidential Data

According to ISTAT guidelines,

the survey features are classified

in Direct, Numerical, Related,

Rare, Visible, Traceable, Sensitive

On the variables:

Fiscal code (=SSN) (f), age (a),

region (r), education(e)

We have a statistical survey

about people that needs to

be anonymized

5. Hybrid Data Science Pipelines

Building hybrid data science pipelines,

including Vadalog, Python, Kafka, Flink,

Dgraph, GraphX, ML, …

One approach for interaction between

Jupyter, ML and Vadalog: Python native

driver for Vadalog

Example (next slide):

Company-type classification problem using “domain knowledge”:

Italian SAE-Code

Calculate $HighInc, $MaxInc, $MinInc parameters in Python

and pass them to the Vadalog KG

Nace KG (part):

5. Hybrid Data Science Pipelines

1. Entity Resolution

2. Similarity in Bipartite Graphs

3. Knowledge Graph Support

4. Computing Higher-Level Events and Signals on KG

5. Fact Enrichment and Verificiation on KGs

Collaboration

“ACME”

… more applications that we cannot talk about at this point

1. Entity Resolution

2. Similarity in Bipartite Graphs

3. Knowledge Graph Support

4. Computing Higher-Level Events and Signals on KG

5. Fact Enrichment and Verificiation on KGs

Collaboration

“ACME”

… more applications that we cannot talk about at this point

• Coverage of Internal KG (IKG)Team

(via machine learning)

and Vadalog DeepReason Solution (DR)

• 7,994 company pairs linked by IKG

•16,379 company pairs linked by VADA

•10,413 company pairs identified by VADA as

strongly linked

• Accuracy (1,200 manually inspected company pairs)

1. Entity Resolution

1. Entity
Blocking

• Reduce 𝑂(𝑛2) complexity by comparing only entities with similar attributes
• Extensive use of text cleaning functions to normalize input values

2. Entity
Comparison

• Compare the similarity of every pair of entities for each of their attributes
• Extensive us of text similarity functions
• Normalize the similarity into a probability 𝑃𝑖, for each attribute 𝑖

3. Probability
Computation

• For each pair of entities, compute the overall probability from the
individual attribute probabilities 𝑃𝑖 using the Naive Bayes formula

𝑃 =
∏𝑃𝑖

∏𝑃𝑖 +∏ 1 − 𝑃𝑖

Entity resolution in three steps

1. Entity Resolution

1. Entity Blocking

key(Id, Key) :-
entityName(Id, Name),
Key = sim:trim(

sim:removeNonWord(
sim:removeDiacritics(
sim:toLowerCase(Name)))).

compute a key for blocking by applying cleaning functions

on attributes (e.g. names, addresses, urls, etc.)

block(DId, CId) :-
key(DId, Key),
key(CId, Key).

establish the pairs of entities to be compared

2. Entity Comparison

compute similarity per attribute (e.g. "name", "address", etc.)

attributeSimilarity(DId, CId, "name", Sim) :-
block(DId, CId),
entityName(DId, DName),
entityName(CId, CName),
Sim = sim:mongeElkan(DName, CName).

+ several special rules expressing specific knowledge,
e.g. about URL structure (zurich.ibm.com vs almaden.ibm.com)

3. Probability Computation

overallProbability(DId, CId, OverallProbability) :-
attributeSimilarity(DId, CId, Att, Prob),
ProbProd = prod(Prob),
InvProbProd = prod(1 - Prob),
OverallProbability = ProbProd / (ProbProd + InvProbProd).

combine similarities (as probabilities) using Naive Bayes

with simple use of aggregates

…or any other ML-based or statistics-based way to combine similarities

Thank You!

