
Managing, Analyzing, and Learning 
Heterogeneous Graph Data: 

Challenges and Opportunities

Jingren Zhou
Vice President
Alibaba Group



Graph Data is Prevalent

Social networks

Electricity grid
(Blackout of August 14, 2003) Gene analysis

Traffic graph
(Visualization of global flights)

On-line behavior targeting



Graph Processing

Decision Support New business opportunities

Graph Processing: High Impact in Practice

Recommender

System
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detection
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Public
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Graph processing becomes extremely valuable in practice!



Existing big data systems are no longer adequate

Novel graph systems

(1) are now 10-100x performant 
than 5 years ago, and still 
evolving fast.

(2) are proven to be able to speed 
up many AI and big data 
computations

Ever more complex queries and 
AI model trainings could easily 
take hours or days even with 
hundreds of the state-of-the-art 
servers.

❌ Suboptimal
performance

An easy to use system

(1) Easy to design your own 
algorithms for parallel graph 
computation

(2) Automated / declarative 
parallelization (with little user 
involvement)

(3) End-to-end AI/big data solution 
in one box

Graph programming is hard. And 
building a real-life AI / big data 
application involves development 
across multiple languages and systems 
to gather, process and train data and 
models.

❌ Hard to learn & use
(high TCO)

Graphs: Foundation of Future AI and Big Data?

•Data heterogeneity：text, 
multimedia, graph, vector, 
SQL, streams

•Fragmented tools:
•Lacks of a unified solution

Graphs could provide a solution:

(1) graphs - an ideal way to unify 
heterogeneous data

(2) many AI and big data problems 
can be expressed as graphs

(3) more expressive than large 
vectors or SQL on tables

(4) industry starts to move towards 
this

❌ Big data and AI –
a fragmented landscape
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New Capabilities Enabled by Massive Graph Analysis

• Billions of vertices

o products, buyers, sellers, …

• Hundred billions of edges

o clicks, orders, payments, …

• Real-time updates

o e.g., 100K edge updates/s



Challenges for Graph Computing 

 Heterogeneous data source
 Social network, knowledge, transactions, etc.

 Large scale 
 Billions of edges and vertices

 Highly dynamic 
 Continuous updates at a tremendous scale

 Highly versatile
 Graph traversal

 Graph analytics

 Graph learning

 Graph mining



Graph Engines 

Common Architecture for Graph Computing

Real-time events
(On-line user behaviors, 

network events, etc.)

Updates

Data intelligence

Human knowledge

On-line reasoning

Business Operators

Data Scientists

Real-time decisions

Other sources

Requests

Off-line mining
(On a snapshot)
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1：Distributed Graph Traversal



Graph Traversal - A Key Primitive for Interactive Exploration

(1) Knowledge search & discovery
(2) Fraudulent activity detection in 

e-commerce

Click farming

Cash-out via fake credits
Fake transactions

Users Items
Attributes

80s
Male

IT professional

Properties

color = red

brand = Gap

for summer
?

(3) Cyber threat intelligence

Find names of regex update[0-9]+.xyz.(com|net) 
and they are hosted by server 10.3.35.* and their 
nameserver is ns1.badnameserver.com.



Gremlin

• Gremlin [1] is the de-facto standard query language for graph traversal with rich 
expressivity

Property graph data model

g.V().has(‘firstname’,’Tom’).as(‘a’)

.repeat(out().simplePath()).times(k)

.where(out().eq(‘a’))

.path()

filtering

loops

conditional

Example: Cycle detection
Find all cycles of length k+1, starting from the persons with first name ”Tom”.

1. Marko A. Rodriguez. 2015. The Gremlin graph traversal machine and language. In Proceedings of the 15th Symposium on Database Programming Languages (DBPL), 2015



Graph Traversal Strategies

• General graph traversal strategies
• Breadth-first Search (BFS)

• Depth-first Search (DFS)

• Challenges
• BFS could result in unbounded memory

o All vertices at level k-1 must be buffered before visiting a vertex at depth level k (i.e., the space complexity 

could be up to O(n), where n is the number of vertices)

• DFS is hard to parallelize

o The backtracking in DFS is inherently sequential

http://mishadoff.com/blog/dfs-on-binary-tree-array/

We address the challenges using dataflow (with dynamic scheduling)



Distributed Graph Store

• Key design choices

• Partitioning a large graph across distributed memory/SSDs

• Real-time updates with snapshot isolation + fault tolerance

• Log structured storage with efficient graph encoding

ingest nodes

snapshot
coordinator

progress

...

store nodes
Log structured key/value storage ||||||||

metadata (vertex/edge 
type and schema)

graph topology with 
properties



Dynamic Dataflow Model of Computation

• Dynamic dataflow [1]

• Nodes: Actors with ports

• Arcs: FIFO connections between the actors

o No communication path exists between actors other 

than the data streams

• Execution semantics
• An actor gets fired when data becomes available on 

one or more arcs

• It can consume more than one tuples on one or more 

arcs per execution

• A dataflow terminates if there are no executable actors

Actor-oriented design: dynamic dataflow

Actor
port arcs

1. Arvind and R. S. Nikhil, Executing a program on the MIT tagged-token dataflow architecture, in IEEE Transactions on Computers, vol. 39, no. 3, pp. 300-318, March 1990



O

S

T F

switch

copy

merge

initial input

loop feedback

iteration #

(context)

+1

if (#<k) T 
else F

Dataflow Compilation

• A Gremlin query can be represented as an 
ordered tree of traversal steps, e.g.,

g.V().has(‘firstname’,’Tom’).as(‘a’)

.repeat(out().simplePath()).times(k)

.where(out().eq(‘a’))

.path()

g

out
s…-

path

times

(k)
out eq

V has rep… wh… path

loop body
termination 
condition

conditional

g.V

has

path

repeat…until

where…

O

E

copy

switch

T F

p



Parallel Execution

• Dataflow partitioning for parallel execution

• Each graph partition has a query worker

• Each worker runs a copy of the dataflow, processing vertices belonging to that partition in parallel

• The workers exchange data among directly-connected actors if needed

…g.V(x)

repeat(
out())

times(2)

values(‘p’)

Physical plan (partitioned)Logical plan

…

…
A worker



Optimizing Traversal Strategies

• Optimal graph traversal strategy is query- and/or data-dependent

• We support different traversal strategies using scheduling

• Depth-first: prioritize tuples with large depth levels

• Breadth-first: prioritize tuples with small depth levels

A DFS wastes a lot 
of time in coming 
back to node 2!

A worker

Local 
scheduler

DL=0

DL=1,2,…

DL=k

DFS-priority

BFS-priority

All strategies can take advantage of additional parallelism via dynamic scheduling!
Remaining challenge: memory management! 



Further Optimization: Early Out

• In many cases, we only need top K results from a traversal, e.g.,

g.V().has(‘firstname’,’Tom’).as(‘a’)

.repeat(out().simplePath()).times(3)

.where(out().eq(‘a’))

.path()

.limit(1)

Step 1.
Identify a scope

Tom Smith

Tom Smith
(top 1 path found)

Step 2.
Track dependencies 
at runtime

Arbiter

Step 3.
Notify output

Step 4.
Remove 
unfinished tokens

To avoid wasted traversal, compiler/runtime

1) Identify early-stoppable scopes (i.e., subgraphs 

containing a limit(k) or conditional)

2) Track input/output dependencies

3) Notify an arbiter (= compiler-generated state 

machine) of any output from scopes

4) Upon early stop, the arbiter notifies scheduler to 

remove any dependent, unfinished tuples

(Scopes can be nested arbitrarily)

Dynamic scheduling makes it possible!



2: Optimizing Pattern Matching in Large Dynamic Graphs



Motivation

A user behavior repository for buyers, sellers, products…, 

and their interactions (e.g., item clicks, orders…)

Items

Brands Payments Places
Movies

User-centered

Leverages the patterns of the interconnected entities for 

fraud detection



Coupon fraud

On-line gambling

Click farming

Complex Graph 
Pattern Matching

Community detection



Fake transaction Cash-out via fake credits

Cycle Detection

Xiafei Qiu, Wubin Cen, Zhengping Qian, You Peng, Ying Zhang, Xuemin Lin, Jingren Zhou: Real-time Constrained Cycle Detection in Large Dynamic 
Graphs. PVLDB 2018



Problem Definition

 Continuous/incremental cycle detection

 Given G and one incoming edge x->y, find out if there is a circle within length k

• A directed graph G

• Size: 500 million vertices, 2 billion edges

• Real-time updates: 20,000 edges/s at peak

• Retention period: 2 days



Baseline Solution

 FOREACH incoming edge x->y

 DO a depth-first search (DFS) from y to x in G
Latency spikes :(



Hot Point-based Index

 A set of hot points {hi | 𝑑 ℎ𝑖 ≥ 𝑡}

 All the paths with length no larger than k among them

h2

h1

h3

4, (2, 7, 5)

1, ()

2, (4)



Search Algorithm

 Step 2: Start from x BFS on inversed graph 
G’, stop if

(i) already length k-1 or

(ii) meet hot points {Ri}

• Step 1: Start from y BFS, stop if

(i) reach x , 

(ii) already length k or

(iii) meet hot point {Li}

• Step 3: Identify the remaining circles involving 
more than one hot points by utilizing HP-Index

Index update: a by-product 
of the search algorithm



Further Optimizations

 Extend the approach to a class of (fuzzy) complex pattern matching
 Automatically analyze and generate query-specific indices

 Optimizations are transparent to users

Graph data 
measures

(Gremlin) query 
patterns

Profiling/runtime 
statistics

Auto-generated 
& self-adaptive 
graph indices

h2

h1

h3



3: Parallelizing Graph Computations



Graph Analytics

Analytics on graphs has been studied for decades

General analytics: PageRank, shortest path, maximum flow, minimum spanning tree…

 Community detection: maximum clique/bi-clique, connected components (Shiloach-
Vishkin’s Algorithm), triangle counting, label propagation algorithm. …

Graph mining: structure mining, graph pattern discovery,…

Graph keyword search

 Structure prediction

…

Many might work on small graphs, but on big graphs, it will be a different story

 A declarative and standardized programming paradigm is not yet in place

 Graph computations are essentially iterative and recursive  (high cost)

 On large graphs (billions of nodes, trillions of edges), parallel computation is a must

Goal: How to parallelize existing graph algorithms?



Graph Analytics in Action: Entity Resolution

 Goal: identify and link/group different manifestations of the same real world object.

 Challenges:
 Iterative and intensive computation
 Large scale and heterogeneous data, dynamic changes (PBs of data with billions of records 

across hundreds data sources with TBs of update daily) 
 Multi-domain connections/relations between possible entities
 Noises and errors, incomplete/missing data

 Data from a large number of online and 
offline services, ranging from online 
marketplace, travel agency and video
streaming to local supermarkets, food delivery
and cinema ticketing

 Question: how many unique users, items, 
business-clients are there across those 
services?

 A common problem faced by many internet 
companies



From Sequential to Parallel

A wide range of graph algorithms are developed to tackle the problem:

 Vertices – possible entities extracted from 100+ heterogeneous data sources

 Edges – possible connections between those entities

 Scale – 10+ billion vertices, 100+ billion edges, and keep growing 

 Various sophisticated graph algorithms were designed on this graph for link prediction (for 
completing missing links), shortest path (for computing weighted distance), fuzzy transitive 
closures (for merging equivalent entities), …

 By the end of the ER process, equivalent/duplicated entities are merged together

• New ideas are easier to try and test in sequential
environment

• Many algorithms might already exist a sequential
version

Nontrivial to be parallelized…

Sequential Parallel



Vertex-Centric Model Systems

 “Think like a vertex”paradigm

 Simple APIs, with which some algorithms can be 
neatly written (e.g., CC, PageRank)

 Industry systems: Pregel/Giraph, GraphX, …

We used to work on an in-house vertex-centric graph system to parallelize the entity resolution. 
However, ever-growing challenges emerged over the years.

 Hard to program. Sometimes impossible to recast sequential algorithms without a complete re-design. 
Especially challenging for data scientists who are not trained with parallel programming.

 Constant struggles over ad-hoc trade-offs. For many algorithms, to parallelize them efficiently in vertex-
centric model often means losing precision or quality. Worse still, users often have little control over the 
process.

 Time-consuming and huge cost. It often took several senior engineers months of effort to bring an 
algorithm online.

 Subpar performance. A single parallel program can take 7+ hours over a graph with 90B edges just to get 
a rough result with degraded quality. End-to-end ER process can easily take days to finish even with 
thousands of processors. Worse still, some expensive computations are not viable due to the rapid burst of
messages.

https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2018_2019/presentation/S3/PREGEL_Vikash.pdf



Alternative to Vertex-Centric? - PIE Model

Q(G)

coordinator

worker worker

coordinator

coordinator

worker worker

Q(G1)
Q(Gn)

Q(G1  M1) Q(Gn  Mn)

PEval

IncEval

• PIE - a graph parallel computation paradigm originally presented in the paper
Wenfei Fan, Wenyuan Yu, Jingbo Xu, Jingren Zhou, Xiaojian Luo, Qiang Yin, Ping Lu, Yang Cao, Ruiqi
Xu: Parallelizing Sequential Graph Computations. ACM Trans. Database Syst. 43(4)

• To compute Q(G), users to provide 3 functions: 

 PEval:  a (sequential) algorithm for Q, for partial evaluation

 IncEval: a (sequential) incremental algorithm for Q

 Assemble: a (sequential) algorithm (often just taking a union of partial results) 

Assemble

① Partial evaluation PEval: evaluate Q( Gi ) in parallel

② Repeat incremental IncEval: compute Q(Gi  Mi) in 

parallel, by treating messages Mi  between different 

workers as “updates”

③ Assemble partial results when it reaches a “fixpoint” 

Messages Mi: aggregated 
partial results pertaining to 

border vertices

evaluate Q on smaller Gi

Data partitioned parallelism: Fragmented graph G = (G1, …, Gn), distributed to workers



Entity Resolution - Single Source Shortest Path

Key observation: if the weighted distance between two vertices is small, chances are they 
could be of the same entity

• SSSP – to compute the shortest paths between a given source and other vertices
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Entity Resolution - Single Source Shortest Path

Key observation: if the weighted distance between two vertices is small, chances are they 
could be of the same entity

• SSSP – to compute the shortest paths between a given source and other vertices
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Entity Resolution - Single Source Shortest Path

Key observation: if the weighted distance between two vertices are small, chances are they 
could be of the same entity

• SSSP – to compute the shortest paths between a given source and other vertices
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Key observation: if the weighted distance between two vertices is small, chances are they 
could be of the same entity

• SSSP – to compute the shortest paths between a given source and other vertices
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Key observation: if the weighted distance between two vertices is small, chances are they 
could be of the same entity

• SSSP – to compute the shortest paths between a given source and other vertices
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• IncEval – A modified Dijkstra’s algorithm that 

handles updated partial results
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IncEval:
Treat updated partial result as updates, and compute 

the updated partial (local) results incrementally
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Bounded

• G. Ramalingam and T. Reps. On 
the computational complexity of 
dynamic graph problems. TCS, 
158(1-2), 1996.

Entity Resolution - Single Source Shortest Path

Key observation: if the weighted distance between two vertices is small, chances are they 
could be of the same entity

• SSSP – to compute the shortest paths between a given source and other vertices
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• IncEval – A modified Dijkstra’s algorithm that 

handles updated partial results
• Assemble – return the partial results

∞

10

∞

∞

0

10
10

2

6

15

6

The process repeats until all reaches fixpoint
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9
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• Existing efficient algorithms for all the 3 UDFs.
• No explicit message passing from users
• Optimization techniques of Dijkstra’s 

algorithms such as “priority queue” are 
automatically inherited, which are not possible 
with vertex-centric systems

Guaranteed to terminate, since “min” is monotonic 

Entity Resolution - Single Source Shortest Path

Key observation: if the weighted distance between two vertices is small, chances are they 
could be of the same entity

• SSSP – to compute the shortest paths between a given source and other vertices



Further Optimizations

 Dynamic scaling for parallel graph computations*

• Elasticity could be relatively easily achieved by vertex-centric systems due to the smaller 

scheduling unit (vertex).

• For PIE models, dynamically repartitioning the graph is often needed.

 Incrementalization of graph algorithms

• It is not easy to develop an efficient incremental algorithms on graphs (IncEval for PIE)

• We have been developing new techniques and tools to help users with little experience 

to design efficient incremental algorithms.

 Interoperability with ML systems, graph storage, graph streaming processing,   …

*Preliminary study to be published in VLDB2019: Wenfei Fan, Chunming Hu, Muyang Liu, Ping Lu, Qiang Yin, Jingren Zhou: “Dynamic Scaling for Parallel Graph Computations ”



4: Graph Neural Network



Graph Embedding

 Graph embedding: low-dimensional vector representation
 Distill high-dimensional node information into a dense vector embedding

 Together with machine learning, graph embedding proves valuable for 
many applications
 Search, node classification, clustering, link predictions, etc.



Extremely Large Scale Attributed
Heterogeneous Graphs with Billions of
Nodes and Trillions of Edges

Unified Graph Embeddings Practical Challenges and
Our Current Focuses

Sampling:
Representative and
Negative Samples

Multiplex:
Node and Edge
Heterogeneities

Mixture Modes:
Users with Different
Latent Interest Categories

Hierarchical:
Users’ community
structures and items’
categories

A Graph Embedding Recommendation System



Cognitive Intelligence Platform

GNN Build Personalized Brain
Capable of inductive reasoning, explainable,

better know consumers than themselves

Alibaba Economy Big
Data Platform

Lead Consumers Lives

Large Scale Graph Neural Network (GNN) Oriented

Weibo

Material, Entertainment and Health

Text, image and video influence
the mind of consumers

https://www.google.com/url?q=http://en.wikipedia.org/wiki/File:Youku_Logo.png&sa=U&ei=U3JzU5SrHJXq8AXF2YGQBQ&ved=0CC4Q9QEwAA&usg=AFQjCNG5-mSCNdE5xRIYXIewrvYD_5RNbA
https://www.google.com/url?q=http://en.wikipedia.org/wiki/File:Youku_Logo.png&sa=U&ei=U3JzU5SrHJXq8AXF2YGQBQ&ved=0CC4Q9QEwAA&usg=AFQjCNG5-mSCNdE5xRIYXIewrvYD_5RNbA


Challenges for GNN Platform

Inductive
complex 
attributed
model

大数据
维度升高

Storage Heterogeneity Multi-Modality Analysis and Inference

Spatial
and
Temporal

Complex
computation

Elevated 
dimension,
not only size



GNN Framework Overview



System Optimizations

 Graph partitioning and clustering

 Co-locate embedding variables with graph partitions

 Reuse embedding if possible

Embedding h



TensorFlow Heterogeneous Graph
Computing

CPU GPUMPI

RAW DATA PROCESS
DISPATCH
& LOAD

TRAINING INFERENCE OUTPUTS FEEDBACK

PS PS

PS

WORKER WORKER

WORKER

PARAMETERS GRADIENTS

Extremely
Large
Scale
Graph
Represent
-ation
Platform

PARALLEL LEARNING AND INFERNCE EXTREMELY LARGE SCALE GRAPHS

Billions of nodes, trillions of edges

GNN Platform Architecture

Node
prediction

Edge
prediction

Community
detection

Dynamic
graph

Data Sources

Load

Store

Graphs

Built in
Algo

Sample
Aggregate
Merge

Apply

Pattern
Recognition

1. Rich algorithm warehouse with improved accuracy measures (5%-90%) for

practical challenges;

2. Performs an order of magnitude faster in terms of graph building, e.g., 492.90 

million vertices, 6.82 billion edges and rich attributes, 5 minutes vs hours by

other state-of-the-arts;

3. 40%-50% faster with the novel caching strategy and demonstrates around 12 

times speed up with the improved runtime.



Algorithm Warehouse

• Training data selection:
 Representative and negative sampling
 Borrow the ideas of importance

sampling
 Extend from node-wise to batch-wise

• Multiplex:
 Rich information between different 

edges types but the various influential 
factors between different edge types is 
hard to capture

 The relationship of different edge 
types is considered through attention 
based framework

 More than 20% improvement over
state-of-the-arts (e.g., DeepWalk)



Mixture GNN

• Most web applications contain various scenarios in which recommendation happens

• A large portion of scenarios in a system are actually long-tailed, without enough user feedback

• Polysemous skip-gram model for both homogeneous and heterogeneous models



Hierarchical GNN

• Current GNN methods are inherently flat and do not learn hierarchical representations 

• Hierarchical GNN uses a hierarchical representations of graphs

• Yields an average improvement of 5–10% accuracy on graph classification benchmarks, compared to 

all existing pooling approaches
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Graph Computing is the Next Big Thing!

 Graph data and its complex analysis are crucial for many applications
 Support a wide range of business applications

 Scenarios are highly versatile

 Managing and analyzing graph data at scale
 Requires distributed graph store with high frequent updates

 Efficient parallel graph processing is a must

 GNN combines machine learning with graph analytics
 Gains increasing popularity in various domains, including social network, 

knowledge graph, recommender system, and even life science.

 Requires sophisticated system optimization to improve performance and 
scalability
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