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Data-Driven Exploration
• Every scientific domain is moving toward 

data-driven exploration, this has led to great 
advances and discoveries

• Companies are capitalizing on data
• Government agencies uses data to operate  

efficiently, make policies, and informed 
decisions

Computing is free
Storage is free

Data are abundant

The bottlenecks lie with people
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Data-Driven Exploration: Challenges
• Data are vast and produced at unprecedented rates

• Sources are broad, varied, and unreliable

• Computational processes are required to extract insight
• But they hard to assemble

algorithms

visual encodings

provenance

data curation

data integration

statistics

data management 

machine learning

interaction modes

math

data discovery
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Data-Driven Exploration: Challenges
• Data are vast and produced at unprecedented rates

• Sources are broad, varied, and unreliable

• Computational processes are required to extract insight
• But they hard to assemble

• Exploratory tasks are inherently iterative as one tests and 
formulates hypotheses

KnowledgeData Data 
Products

Specification

Computation Perception &
Cognition

[Modified from Van Wijk, Vis 2005]

Exploration
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Data-Driven Exploration: Challenges
• After many steps…

"An analysis has 30 different steps. It is tempting to just do this then that and 
then this. You have no idea in which ways you are wrong and what data is 
wrong”      [Kandel et al., VAST 2012]

• It is easy to get lost and not remember how a result was derived
• Processes can break or misbehave in unforeseen ways 
• Results can be hard to understand, interpret and trust

knowledgedata decisions

Incorrect conclusions can lead to bad decisions!
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An Analogy: Cars
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?

Data-Driven Exploration: Goal

Grand challenge for data science and engineering:
Empower a wide range of users to explore and obtain

trustworthy, actionable insights from data.
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Talk Outline
• Interactive exploration of spatio-temporal urban data

• Using data to explain and discover data

• Open problems for database research

Usability in data exploration 

Guiding users and building trust
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Urban Data
• Cities are the loci of economic activity
• 50% of the world population lives in cities,  by 2050 the 

number will grow to 70%
• Growth leads to problems, e.g., transportation, environment 

and pollution, housing, infrastructure
• Good news: Lots of data being collected by many cities in the 

world
Environment

Meteorology, pollution, 
noise, flora, fauna

People

Relationships, 
economic activities, health, 

nutrition, opinions, …

Condition, operations

Infrastructure

Opportunity: 
Analyze the data exhaust to understand how different 

components interact over space and item

Use these insights to make cities more efficient and 
sustainable, and improve the lives of their residents
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Urban Data: Success Stories
• Real-time bus arrival predictions

• 94% reported increased or greatly increased 
satisfaction with public transit

• Illegal conversions in NYC
• DS team (1) integrated data  from 19 different 

agencies that provided indication of issues in 
buildings; (2) crossed  with fire data; (3) Created a 
prediction model

• Hit rate for inspections went from 13% to 70%

• Foreclosures and crime
• Neighborhoods with concentrated foreclosures 

see an uptick in crime for each foreclosure notice 
issued

• NYPD updated its policing strategies

Benefit re
sidents

Make citi
es more efficie

nt

Impact 
policy
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Urban Data: What is hard?

• City components interact in 
complex ways

• Need to explore the city data 
exhaust to understand these 
interactions

Environment

Meteorology, pollution, 
noise, flora, fauna

People

Relationships, 
economic activities, health, 

nutrition, opinions, …

Condition, operations

Infrastructure
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Urban Data Analysis: Common Practice
• Domain experts formulate hypotheses
• Data scientists select data sets and slices, perform analyses, 

and derive plots 
• Domain experts examine the plots
• Issues:

• Analyses are mostly confirmatory (Tukey, 1977) – batch-oriented analysis 
hampers exploration 

• Dependency on data specialists distances domain experts from the data
• Data are noisy and complex – often multivariate spatio-temporal
• Queries are expensive: widely-used tools are not scalable, e.g., Excel, GIS, 

SAS, …

Need scalable tools and techniques that help 
domains experts interactively explore data
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Urbane: Exploring Urban Data

https://www.youtube.com/watch?v=_B35vxCgDw4&feature=youtu.be

[Ferreira et al., IEEE VAST 2015;
Doraiswamy et al., ACM SIGMOD 2018] 
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Usability through Visual 3D Queries

View Impact Queries Sky Exposure Queries
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Usability through Visual 2D Queries

Figure 1: Exploring urban data sets using Urbane: (a) visualizing data distribution per neighborhood, (b) visualizing data distribu-
tion per census tract, (c) comparing data over di↵erent neighborhoods. The blue line denotes the NYC average for these data.

such that every point within a polygon is closest to the resource as-
sociated with the polygon. Aggregating the urban data over these
polygons then allows one to compute and inspect the e↵ect / cov-
erage of the new resources with respect to these data sets. To be
e↵ective, these summarizations must be executed in real-time as
users interactively change configurations.
Problem Statement and Challenges. In this paper, we propose
new approaches to speedup the execution of spatial aggregation
queries, which, as illustrated in the examples above, are essential
to explore and visualize spatio-temporal data. These queries can
be translated into the following SQL-like query that computes an
aggregate function over the result of a spatial join between two data
sets, typically a set of points and a set of polygons.
SELECT AGG(attr) FROM P, R
WHERE P.loc INSIDE R.geometry [AND filterCondition]*
GROUP BY R.id

Given a set of points of the form P(loc,a1,a2, . . . ), where loc is the
point location and each ai is an attribute associated with the point,
and a set of polygonal regions R(id,geometry), this query performs
an aggregation (AGG) over the result of the join between P and R.
Functions commonly used for AGG include the count of points and
average of the specified attribute. The geometry of a region can
be any arbitrary polygon. The query can also have zero or more
filterConditions on the attributes. In general, P and R can be
either tables (representing data sets) or the results from a sub-query
(or nested query).

The heat maps in the Figures 1(a) and 1(b) were generated by
setting P as pickup locations of the taxi data; R as either neigh-
borhood (a) or census tract (b) polygons; AGG as COUNT(*); and
filtered on time (June 2012). On the other hand, to obtain the par-
allel coordinate visualization in Figure 1(c), multiple queries are
required: the above query has to be executed for each of the data
sets of interest that contribute to the dimensions of the chart.

Enabling fast response times to such queries is challenging for
several reasons. First, the point-in-polygon (PIP) tests to find which
polygons contain each point require time linear with respect to the
size of the polygons. Real-world polygonal regions have complex
shapes, often consisting of hundreds of vertices. This problem is
compounded due to the fact that data sets can have hundreds of
millions to several billion points. Second, as illustrated in the ex-
amples above, when using interactive visual analytics tools, users
can dynamically change not only the filtering conditions and aggre-
gation operations, but also the polygonal regions used in the query.
Since the query rate is very high in these tools, delays in processing
a query have a snowballing e↵ect over the response times.

Existing spatial join techniques, common in database systems,
are costly and often suitable only for batch-oriented computations.

The join is first solved using approximations (e.g., bounding boxes)
of the geometries. Then, false matches are removed by comparing
the geometries (e.g., performing PIP tests), which is a computa-
tionally expensive task. This two stage evaluation strategy also in-
troduces the overhead of materializing the results of the first stage.
Finally, the aggregates are computed over the materialized join re-
sults and incur additional query processing costs. Data cube-based
structures (e.g., [31]) can be used to maintain aggregate values.
However, creating such structures requires costly pre-processing
while the memory overhead can be prohibitevely high. More im-
portantly, these techniques do not support queries over arbitrary
polygonal regions, and thus are unsuitable for our purposes.

Last but not least, while powerful servers might be accessible to
some, many users have no alternative other than commodity hard-
ware (e.g., business grade laptops, desktops). Having approaches
to e�ciently evaluate the above queries on commodity systems can
help democratize large-scale visual analytics and make these tech-
niques available to a wider community.

For visual analytics systems, it is often su�cient to obtain ap-
proximate answers to queries as long as they do not alter the re-
sulting visualizations. Moreover, the exploration is typically per-
formed using the “level-of-detail” (LOD) paradigm: first look at the
overview, and then zoom into the regions of interest for more de-
tails [51]. Thus, these systems can greatly benefit from an approach
that trades-o↵ accuracy for response times, and enables LOD ex-
ploration that improves accuracy when focusing on details.
Our Approach. By leveraging the massive parallelism provided by
current generation graphics hardware (Graphics Processing Units
or GPUs), we aim to support interactive response times for spa-
tial aggregation over large data. However, accomplishing this is
challenging. Since the memory capacity of a GPU is limited, data
must be transferred between the CPU and GPU, and this introduces
significant overhead when dealing with large data. In addition, to
best utilize the available parallelism, GPU occupancy must be max-
imized. We propose rasterization-based methods that use the fol-
lowing key insights to overcome the above challenges:
• Insight 1: It is not necessary to explicitly materialize the result

of the spatial join since the final output of the query is simply the
aggregate value;
• Insight 2: A spatial join between two data sets can be consid-

ered as “drawing” the two data sets on the same canvas, and then
examining their intersections; and
• Insight 3: When working with visualizations, small errors can

be tolerated if they cannot be perceived by the user in the visual
representation.

Insight 1 allows combining the aggregation operation with the ac-
tual join. The advantages of this are twofold: (i) no memory needs

2

[IEEE VAST 2015;  ACM SIGMOD 2018] 

SELECT COUNT(*)
FROM taxi T, neighborhoods N
WHERE T.pickup INSIDE N.geometry

AND T.picktime > 2008-12-31 
AND T.picktime < 2009-01-31

GROUP BY N.id
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Challenge: Interactive Query Evaluation
“increased latency reduces the rate at which users 

make observations, draw generalizations and generate 
hypotheses” [Liu and Heer,  IEEE TVCG 2014]

High query rate
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SELECT COUNT(*)
FROM crime C, neighborhoods N
WHERE C.location INSIDE 
N.geometry
AND C.date in January 2009
GROUP BY N.id

Challenge: Spatial Aggregation

SELECT COUNT(*)
FROM taxi T, neighborhoods N
WHERE T.pickup INSIDE N.geometry
AND T.picktime in January 2009
GROUP BY N.id

Figure 1: Exploring urban data sets using Urbane: (a) visualizing data distribution per neighborhood, (b) visualizing data distribu-
tion per census tract, (c) comparing data over di↵erent neighborhoods. The blue line denotes the NYC average for these data.

such that every point within a polygon is closest to the resource as-
sociated with the polygon. Aggregating the urban data over these
polygons then allows one to compute and inspect the e↵ect / cov-
erage of the new resources with respect to these data sets. To be
e↵ective, these summarizations must be executed in real-time as
users interactively change configurations.
Problem Statement and Challenges. In this paper, we propose
new approaches to speedup the execution of spatial aggregation
queries, which, as illustrated in the examples above, are essential
to explore and visualize spatio-temporal data. These queries can
be translated into the following SQL-like query that computes an
aggregate function over the result of a spatial join between two data
sets, typically a set of points and a set of polygons.
SELECT AGG(attr) FROM P, R
WHERE P.loc INSIDE R.geometry [AND filterCondition]*
GROUP BY R.id

Given a set of points of the form P(loc,a1,a2, . . . ), where loc is the
point location and each ai is an attribute associated with the point,
and a set of polygonal regions R(id,geometry), this query performs
an aggregation (AGG) over the result of the join between P and R.
Functions commonly used for AGG include the count of points and
average of the specified attribute. The geometry of a region can
be any arbitrary polygon. The query can also have zero or more
filterConditions on the attributes. In general, P and R can be
either tables (representing data sets) or the results from a sub-query
(or nested query).

The heat maps in the Figures 1(a) and 1(b) were generated by
setting P as pickup locations of the taxi data; R as either neigh-
borhood (a) or census tract (b) polygons; AGG as COUNT(*); and
filtered on time (June 2012). On the other hand, to obtain the par-
allel coordinate visualization in Figure 1(c), multiple queries are
required: the above query has to be executed for each of the data
sets of interest that contribute to the dimensions of the chart.

Enabling fast response times to such queries is challenging for
several reasons. First, the point-in-polygon (PIP) tests to find which
polygons contain each point require time linear with respect to the
size of the polygons. Real-world polygonal regions have complex
shapes, often consisting of hundreds of vertices. This problem is
compounded due to the fact that data sets can have hundreds of
millions to several billion points. Second, as illustrated in the ex-
amples above, when using interactive visual analytics tools, users
can dynamically change not only the filtering conditions and aggre-
gation operations, but also the polygonal regions used in the query.
Since the query rate is very high in these tools, delays in processing
a query have a snowballing e↵ect over the response times.

Existing spatial join techniques, common in database systems,
are costly and often suitable only for batch-oriented computations.

The join is first solved using approximations (e.g., bounding boxes)
of the geometries. Then, false matches are removed by comparing
the geometries (e.g., performing PIP tests), which is a computa-
tionally expensive task. This two stage evaluation strategy also in-
troduces the overhead of materializing the results of the first stage.
Finally, the aggregates are computed over the materialized join re-
sults and incur additional query processing costs. Data cube-based
structures (e.g., [31]) can be used to maintain aggregate values.
However, creating such structures requires costly pre-processing
while the memory overhead can be prohibitevely high. More im-
portantly, these techniques do not support queries over arbitrary
polygonal regions, and thus are unsuitable for our purposes.

Last but not least, while powerful servers might be accessible to
some, many users have no alternative other than commodity hard-
ware (e.g., business grade laptops, desktops). Having approaches
to e�ciently evaluate the above queries on commodity systems can
help democratize large-scale visual analytics and make these tech-
niques available to a wider community.

For visual analytics systems, it is often su�cient to obtain ap-
proximate answers to queries as long as they do not alter the re-
sulting visualizations. Moreover, the exploration is typically per-
formed using the “level-of-detail” (LOD) paradigm: first look at the
overview, and then zoom into the regions of interest for more de-
tails [51]. Thus, these systems can greatly benefit from an approach
that trades-o↵ accuracy for response times, and enables LOD ex-
ploration that improves accuracy when focusing on details.
Our Approach. By leveraging the massive parallelism provided by
current generation graphics hardware (Graphics Processing Units
or GPUs), we aim to support interactive response times for spa-
tial aggregation over large data. However, accomplishing this is
challenging. Since the memory capacity of a GPU is limited, data
must be transferred between the CPU and GPU, and this introduces
significant overhead when dealing with large data. In addition, to
best utilize the available parallelism, GPU occupancy must be max-
imized. We propose rasterization-based methods that use the fol-
lowing key insights to overcome the above challenges:
• Insight 1: It is not necessary to explicitly materialize the result

of the spatial join since the final output of the query is simply the
aggregate value;
• Insight 2: A spatial join between two data sets can be consid-

ered as “drawing” the two data sets on the same canvas, and then
examining their intersections; and
• Insight 3: When working with visualizations, small errors can

be tolerated if they cannot be perceived by the user in the visual
representation.

Insight 1 allows combining the aggregation operation with the ac-
tual join. The advantages of this are twofold: (i) no memory needs
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Spatial Aggregation

4	

Taxi	 Neighborhoods	

Selection	 Index	

Join	

Aggregation	

Result	

Materialize	the	Join	

Billions	of	points	 Hundreds	of	vertices	

Point-in-Polygon	tests	

Filter	&	Refine	

Unsuitable	for	interactive	applications	

Group	by:	neighborhood.id	
Function:	count(pickup)	

taxi.pickup		
inside	
neighborhood.geometry		

taxi.picktime	in	January	2014	

SELECT COUNT(*) 
FROM taxi T, neighborhoods N 
WHERE T.pickup INSIDE N.geometry 
AND T.picktime in January 2009 
GROUP BY N.id 
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Spatial Aggregation: A Geometric Perspective

Leverage the graphics pipeline of the GPU

Spatial join = “Drawing” points and polygons 
on the same canvas

Spatial Aggregation: a Geometric Perspective 

5	

Input	points	 Input	polygon	 Spatial	join	

Leverage	the	graphics	pipeline	of	the	GPU	

Spatial	join	=	“Drawing”	on	the	same	canvas	
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Raster Join: I. Draw the Points
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Raster Join: I. Draw the Points
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Raster Join: I. Draw the Points
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Raster Join: I. Draw the Points
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Raster Join: I. Draw the Points
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Raster Join: I. Draw the Points
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Raster Join: I. Draw the Points
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Raster Join: II. Draw the Polygons
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Raster Join: II. Draw the Polygons
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Raster Join: II. Draw the Polygons
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Raster Join: II. Draw the Polygons
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Raster Join: II. Draw the Polygons
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Raster Join: II. Draw the Polygons
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32No Point-in-Polygon tests

Combines the aggregation with the join operation
Exploits the native support for drawing in GPUs 
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Performance Evaluation

[Tzirita et al., PVLDB 2017]

Hardware: Laptop with Intel Core i7 Quad-Core @2.8 GHz, 16GB RAM. 
NVIDIA GTX 1060 GPU, 6GB VRAM (usage limited to 3GB)
Data Sets: NYC Taxi data (over 868 million points),  260 NYC neighborhood 
polygons

Bounded
Accurate
Baseline	(GPU)
Baseline	(Multi-CPU)

1.1 sec to count number of taxi pickups 
in each NYC neighborhood over 5 years

https://github.com/ViDA-NYU/raster-join
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Interactive Spatio-Temporal Selection
• Spatio-temporal index based on out-of-

core kd-tree using GPUs 
• Can index and simultaneously filter 

multiple attributes: avoid joins and 
reduce the number of point-in-polygon 
(PIP) tests

• Block-based kd-tree
• Tree nodes store kd-tree, leaf nodes 

represent a set of k-dimensional 
nodes that point to a leaf block 

• Create big blocks – tree is small and 
fits in memory

• Use GPU to search the blocks in 
parallel – speeds up PIP tests

[Doraiswamy et al., ICDE 2016]
https://github.com/harishd10/mongodb

http://www.taxivis.org
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Performance Evaluation

Query MongoDB PostgreSQL ComDB

Time Time Speed up Time Speed up

1 0.075 503.9 6718 20.6 274

2 0.080 501.9 6273 23.3 291

3 0.067 437.8 6534 21.6 322

4 0.070 437.1 6244 32.6 465

Time in Seconds
868 million trips; ~13k results/query

Find all trips between Lower Manhattan and the 
two airports, JFK and LGA, during  all  

Sundays in May 2011.

[Doraiswamy et al., ICDE 2016]
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Take Away
• You don’t need big iron to analyze big data, you can do it on 

your laptop!
• Usability requires combining techniques from Visualization, 

Computer Graphics,  HCI, and data management [Doraiswamy
et al., CG&A 2018]

• Connecting Visualization and Data Management Research 
[Chang et al., Dagstuhl 2018]

• Great potential for impact: democratizing large-scale data 
analysis
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Impact: TaxiVis

Juliana Freire <freire.juliana@gmail.com>

Fwd: NYC taxi data
7 messages

Claudio T. Silva <csilva@nyu.edu> Thu, Oct 24, 2013 at 6:27 PM
To: Katepalli Raju Sreenivasan <krs3@nyu.edu>
Cc: "juliana.freire@nyu.edu" <juliana.freire@nyu.edu>

Here is the feedback from the Taxi & Limousine Commission about our work...

Among other things: "We were truly blown away!"

---------- Forwarded message ----------
From: Stiles, Rodney (TLC) <Stilesr@tlc.nyc.gov>
Date: Thu, Oct 24, 2013 at 4:58 PM
Subject: NYC taxi data
To: "Claudio Silva (csilva@nyu.edu)" <csilva@nyu.edu>, "Huy Vo (huy.vo@nyu.edu)" <huy.vo@nyu.edu>,
"Caryn Joy Knutsen (caryn.knutsen@nyu.edu)" <caryn.knutsen@nyu.edu>, "Kim Alfred
(kim.alfred@nyu.edu)" <kim.alfred@nyu.edu>
Cc: "Chhabra, Ashwini (TLC)" <Ashwini.Chhabra@tlc.nyc.gov>, "Johns, Richard (TLC)" <johnsr@tlc.nyc.gov>

Hi all,

 

First, I would like to thank you all for coming to TLC on Monday to share the work you’ve done with our taxi
data.  We were truly blown away!  In fact, we had been talking with City DOT about how we would love a
product like the one you’ve demonstrated to us.  After seeing the program on Monday, we told DOT about
how closely the application you’ve built comes to one we’ve envisioned.  Staff at DOT—particularly those
working on modeling traffic with the use our taxi data—would love to see a demo similar to the one you gave
for us on Monday.  We think that could be a great springboard to a discussion of what we see as the potential
future use for our data in combination with other available sources of data.

 

Is there any way we could set up a time next week to all meet over at DOT?  Let me know what you think, and
I’d be happy to make the arrangements.

 

Cheers,

Rodney

 

Gmail - Fwd: NYC taxi data https://mail.google.com/mail/u/0/?ui=2&ik=ef235e8a6c&view...

1 of 7 4/30/14, 7:14 PM

“The speed at which the tool permits us 
to work has saved multiple hours of staff 
time and has dramatically improved the 

unit’s output and capabilities.”
Assistant Commissioner, DoT

http://www.taxivis.org
[Ferreira et al., IEEE TVCG 2013]

http://www.taxivis.org/
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Impact: Urbane

[Ferreira et al., IEEE VAST 2015;
Doraiswamy et al., ACM SIGMOD 2018] 
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Urban Data Quality
• NYC Taxi Data: ~500k trips/day; 868 million trips in 5 years

Dataset Statistic Trip Duration (min) Trip Distance (mi) Fare Amount (US$) Tip Amount (US$)
Min 0.00 0.00 0.00 0.00

2008 Avg 16.74 2.71 0.09 0.10
Max 1440.00 50.00 10.00 8.75
Min 0.00 0.00 2.50 0.00

2009 Avg 7.75 6.22 6.04 0.38
Max 180.00 180.00 200.00 200.00
Min -1,760.00 -21,474,834.00 -21,474,808.00 -1,677,720.10

2010 Avg 6.76 5.89 9.84 2.11
Max 1,322.00 16,201,631.40 93,960.07 938.02
Min 0.00 0.00 2.50 0.00

2011 Avg 12.35 2.80 10.25 2.22
Max 180.00 100.00 500.00 200.00
Min 0.00 0.00 2.50 0.00

2012 Avg 12.32 2.88 10.96 2.32
Max 180.00 100.00 500.00 200.00

Table 1: Statistics for the taxi datasets. Tip amount is available for trips paid by credit card only.

2.2 Exploring Quality Issues in Spatio-Temporal Data

Computing simple statistics over attributes can help uncover potential issues in a dataset. However, in the case of
taxi trips, substantial complexity is added to the cleaning process due to the spatio-temporal nature of the data.
Manual (exhaustive) exploration is time-consuming and, for large datasets such as the taxi data, it is impractical.
For example, temporal aggregation of a year’s worth of data into a discrete set of hourly intervals results in over
8,000 data slices to be explored.

Recently, techniques and systems have been proposed to streamline and better support exploratory analyses
of spatio-temporal data. These include visualization and interaction techniques that allow users to freely explore
the data at various levels of aggregation [2, 12, 35, 39] as well as indexing strategies that speed up the compu-
tationally expensive point-in-polygon queries required for this type of data [11]. However, effective interaction
with spatio-temporal visualizations remains a challenge [15, 28] and, even by using these techniques, domain
experts may still need to examine a prohibitively large number of spatio-temporal slices to discover interesting
patterns and irregular behaviors, including potential errors in the data. As a step towards addressing this prob-
lem, we proposed a scalable technique to automatically discover spatio-temporal events and guide users towards
potentially interesting data slices [10] (see Section 3.1 for details). Note that mining for exceptions at different
levels of aggregations for relational data has been studied before in the context of OLAP data cubes [29, 30].

While automatic event detection can help steer users to interesting data slices, the user is still faced with
the challenge of understanding the events and determining whether they correspond to data quality issues or
important features. In [8], we presented the Data Polygamy framework, which enables the discovery of relation-
ships between spatio-temporal datasets through their respective events. These relationships provide hints that
can help explain the events. The relationship between the number of taxi trips over time and wind speed shown
in Figure 1 is one example of a relationship discovered by the Data Polygamy framework.

Techniques that enable users to interactive explore spatio-temporal data, support automatic event detection,
and aid in the discovery of relationships among disparate datasets are essential in the discovery (and resolution)
of potential data quality issues in spatio-temporal data. In what follows, we present a series of case studies that
show how these techniques can help users identify and reason about quality issues in spatio-temporal data.

5

Figure 8: Inaccurate GPS points (a) in rivers, (b) in the ocean, and (c) outside North America.

In the 2010 taxi dataset, for the month of May, there were 7.1 million ghost trips. Given the 154 million
trips that took place that month, this corresponds to an error rate of about 4.60%. To better understand which
of the overlapping trips are defective, we would need domain knowledge from expert users and TLC to perform
data cleaning: all the trips or just a subset may be erroneous. The number of ghost trips is much smaller for the
2011 dataset: the error rate is only 0.20%. Since the taxi dataset for 2011 has considerably fewer invalid values
compared to 2010, as described in Section 2.1, one possible explanation is that different cleaning procedures
were used for these two years, and inconsistencies such as ghost trips were removed before the release of the
2011 dataset.

4 Discussion

In this paper, we discussed some of the challenges involved in cleaning spatio-temporal urban data. We presented
a series of case studies using the NYC taxi data that illustrate data cleaning challenges and suggested potential
methodologies to address these challenges. These methodologies form the basis for integrating cleaning with
data exploration. Data cleaning is necessary for data exploration, and through data exploration, users can attain
a better understanding of the data which can lead to the discovery of cleaning constraints and enable them to
discern between errors and features. Data exploration, however, requires a complex trial-and-error process.
Thus, usable tools are needed to guide and assist users in the cleaning process. As the case studies we discussed
illustrate, this is particularly true for spatio-temporal data, where visual analytics and event detection techniques
at different resolutions are essential to identify quality issues.

The case studies presented in Section 3 show that some cleaning decisions are not clear cut. Often, multiple
datasets are required to help an expert decide whether a data point is erroneous or represents an important feature.
While there has been preliminary work on the discovery of relationships across datasets [8], there are still many
open problems in identifying relevant data that can be used to explain events within a large collection of datasets
and in a systematic fashion.

Lack of sufficient knowledge is another issue that hampers data cleaning. Even though experts can (and
should) be involved in most of the process, they may be unavailable, or it may be expensive to hire them for
cleaning large datasets. Crowdsourcing systems could help the data analyst clean data more efficiently: user
feedback can be used to learn features and “separate the wheat from the chaff.”

Different questions that arise during exploration may require different cleaning strategies. While visual-
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Data quality issues [Freire et al., IEEE DEB 2016]
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Are these big drops data quality issues in the data?

Or do they correspond to real events?

NYC Taxi
Data
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NYC Taxi Data

Understanding Data

NYC Weather Data

Hurricane Irene Hurricane Sandy

Can we use data to explain data?
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The Data Polygamy Framework
• Automatically discovers relationships between data sets
• Each data set can be related to zero or more data sets 

through several attributes: Data sets are polygamous
• Guide users in data discovery and analysis by allowing them 

to pose relationship queries
Find all data sets related to a given data set     D

[Chirigati et al., ACM SIGMOD 2016;
Chan et al., ACM SIGMOD 2017]

Identify potential
data quality issues

Explain interesting
features

Discover attributes 
for predictive models
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Relationship Discovery
• Desiderata:

• Take both space and time into account 
• Capture atypical behavior

• Challenges
• Many data sets, each consisting of many attributes, e.g., Weather data: >200 

attributes; NYC Open data: 8 attributes per data set on average
• Data sets can be large, e.g., 180M trips per year
• Data at multiple spatio-temporal different resolutions
• Combinatorially large number of relationships to evaluate

• ~2.4 million possible relationships among NYC Open Data alone for a single 
spatio-temporal resolution
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• Use topological representation for the data
• Each attribute is represented as a set of time-varying  scalar 

functions: f : [S⇥ T] ! R
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Topology-Based Relationships
• Use topological representation for the data
• Each attribute is represented as a set of time-varying  scalar 

functions: 
• Uniform representation for all data
• Naturally captures atypical behavior –
salient features

Two attributes are related if their salient features overlap 
in space and time

A salient feature is a spatio-temporal region 
whose behavior differs from its neighborhood

Critical Points
f : [S⇥ T] ! R
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Data Set to Scalar Functions
• Each attribute in a data set represented as a set of time-

varying  scalar functions
• Functions computed at all possible resolutions

:: High Resolution GridS Neighborhood ResolutionS

Density function for taxi trips
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Identify Salient Features
• Topological features of a scalar function: salient features 

correspond to peaks and valleys
• Neighborhood defined by a threshold

• Use topological persistence to automatically compute thresholds in a data-
driven fashion

θ+

θ-

minima of the taxi-density function 
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Identify Salient Features
• Topological features of a scalar function; salient features 

correspond to peaks and valleys
• Neighborhood defined by a threshold

• Use topological persistence to automatically compute thresholds in a data-
driven fashion

• Merge Tree Index efficiently identifies features at all resolutions
• O(n log n) to construct
• Computing features is output sensitive  

• Benefit: features can have arbitrary shapes

8am - 9am
May 1 2011

5 Boro Bike Tour
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Find Candidate Relationships

• Relationship between functions f and g consists of the set of spatio-
temporal points that are features in both functions

• E.g., for Hurricane Sandy, there is a negative feature in the taxi density function 
and a positive feature in the wind speed function

Positive
relationship

Negative
relationship
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Evaluating Relationships

• Relationship Score: Captures the nature of the relationship – how 
positively or negatively related

• Relationship Strength: How often the functions are related – strong 
or weak

• Restricted Monte Carlo procedure to test the statistical significance 
accounting for the spatial and temporal proximity

• Prune potentially coincidental relationships

p – no. of positive features
n – no. of negative features

𝜏 =
#𝑝 − #𝑛
#𝑝 + #𝑛

𝜌 = 𝐹1 𝑓1, 𝑓2 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
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Experimental Evaluation
• Implemented using map-reduce

• Feature identification and relationship evaluation are independent operations
• Two collections of data sets used for experiments

• NYC Urban: 9 data sets from NYC agencies
• NYC Open Data: 300 spatio-temporal data sets
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Quantitative Evaluation
• Approach is efficient: 200 min to compute scalar functions and 

features for NYC Open Data; and 60 min for NYC Urban
• Scales linearly with number of compute nodes
• Query rate: evaluate 104 relationships per minute
• Assessed correctness and robustness

https://github.com/ViDA-NYU/data-polygamy
[Chirigati et al., ACM SIGMOD 2016]
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Qualitative Evaluation

Does the approach uncover interesting, non-trivial
relationships?
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Taxis and Rainy Days
Why it is so hard to find a taxi when it is raining?

Find all relationships between Taxi
and Weather data sets

X
# Taxi Precipitation

X
Taxi Fare Precipitation

Negative relationship between number of taxis and 
average precipitation

Strong positive relationship between precipitation 
and average fare

Hypothesis: Taxi drivers are target earners

Suggests that hypothesis is true
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Taxis and Rainy Days
Why it is so hard to find a taxi when it is raining?

Find all relationships between Taxi
and Weather data sets

X
# Taxi Precipitation

X
Taxi Fare Precipitation

Negative relationship between number of taxis and 
average precipitation

Strong positive relationship between precipitation 
and average fare

Hypothesis: Taxi drivers are target earners

Suggests that hypothesis is 
true

This hypothesis had been refuted by [Farber 2014]
• Farber did not find a correlation (using OLS regression) 

between drivers’ earnings and rainfall. 
• But (i) he did not take into account the amount of rainfall—

instead, he used a binary value indicating whether it rained 
or not; and (ii) he considered the entire time period—
periods with very sparse rainfall are considered equivalent 
to those having higher rainfall. 

It is important to consider salient features
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Take Away
• Guide users in data exploration: use data to explain data and 

gain trust
• Caution: Helps generate hypotheses, further validation is 

needed to ascertain that a relationship really holds
• Variations of the approach are possible

• Use different data models, event detection methods, alignment strategies, 
and relationship types [Bessa et al., work in progress]

• Useful for data discovery – to find related data sets
Vision: use as on operation in search engines for structured data 
[DARPA D3M]

https://www.darpa.mil/program/data-driven-discovery-of-models
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AlphaD3M + Visus + Auctus
Automatic synthesis 

pipelines using 
reinforcement learning 

with self-play

[Drori et al., 
ICML AutoML 2018]

[Santos et al., 
ACM SIGMOD
HILDA 2019]

User-guided exploration 
and curation of pipelines

Data augmentation [Chirigati et al.,   AIDR 2019]
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Augmenting Data with Auctus
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Conclusions & Open Problems
• Data-driven exploration has transformed science, 

government and industry
• Grand challenge: empower domain experts to effectively 

explore data and extract actionable knowledge they can 
trust
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Conclusions & Open Problems
• Data-driven exploration has transformed science, 

government and industry
• Grand challenge: empower domain experts to effectively 

explore data and extract actionable knowledge they can 
trust

• Need new techniques and usable tools that 
• Guide users as they generate and test hypotheses
• Help them assess the quality and debug their results
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Provenance for Data-Driven Exploration

• Need to systematically capture the provenance of the 
exploration process [VisTrails, ReproZip, noWorkflow]

• Benefits: transparency + reproducibility
Identify root causes of problems – both in data and 

computational processes

KnowledgeData Data 
Products

Specification

Computation Perception &
Cognition

[Modified from Van Wijk, Vis 2005]

Exploration
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Debugging Data Science Pipelines

Read Data Train Test
Split Estimation Compute

ScoreData Score

Instance Data Library Estimator Score Evaluation

CP1 Iris 1.0 Logistic regression 0.9 Succeed

CP2 Digits 1.0 Decision tree 0.8 Succeed

CP3 Iris 2.0 Gradient boosting 0.2 Fail

CP4 Digits 2.0 Gradient boosting 0.3 Fail

CP5 Iris 1.0 Decision tree 0.7 Succeed

CP5 Images 1.0 Gradient boosting 0.9 Succeed

P = {Data, Library, Estimator}
Udata = {Iris, Digits, Images}
Ulibrary = {1.0, 2.0}
Uestimator = {Logistic regression, 

Decision tree, 
Gradient boosting}

E = score > 0.6

• Analyze provenance and explore parameter space to identify 
root causes

•
[Lourenço et al., ACM SIGMOD DEEM 2019]
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Conclusions & Open Problems
• Data discovery, cleaning, and integration 

• Handle data in the wild: no key-foreign key, incomplete metadata, dirty data
• Advanced profiling – including relationship discovery
• Assist users in cleaning: usability + provenance [Vizier, SIGMOD2019]

• Need interdisciplinary teams to solve real problems
• Visualization, data management, computational topology, computer 

graphics, statistics
• Collaboration with domain experts
• Virtuous cycle: interdisciplinary research that derives new problems 

and solutions for multiple areas
• Data management community is well positioned to have 

tremendous practical impact
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